Comparison of iPSC-derived Microglialike Differentiation Protocols

Vicky Chou Young-Pearse Lab

iPSC NeuroHub Journal Club Tuesday, 10 April 2018

Microglia are the resident macrophages of the brain

Microglia represent 10-15% of cells in the brain

Microglia develop from yolk sac myeloid progenitors

Ginhoux et al (2013) Frontiers in Cellular Neuroscience

Microglia Differentiation Approaches

Microglia Differentiation Protocols

Muffat et al (2016) Nature Medicine

Efficient derivation of microglia-like cells from human pluripotent stem cells

Julien Muffat^{1,8}, Yun Li^{1,8}, Bingbing Yuan¹, Maisam Mitalipova¹, Attya Omer^{1,2}, Sean Corcoran^{1,3}, Grisilda Bakiasi^{1,4}, Li-Huei Tsai⁵, Patrick Aubourg^{2,6}, Richard M Ransohoff⁷ & Rudolf Jaenisch^{1,3}

Pandaya et al (2017) Nature Neuroscience

Abud et al (2017) Neuron

Differentiation of human and murine induced pluripotent stem cells to microglia-like cells

Hetal Pandya¹, Michael J Shen¹, David M Ichikawa¹, Andrea B Sedlock¹, Yong Choi¹, Kory R Johnson¹, Gloria Kim¹, Mason A Brown¹, Abdel G Elkahloun², Dragan Maric¹, Colin L Sweeney³, Selamawit Gossa¹, Harry L Malech³, Dorian B McGavern¹ & John K Park^{1,4}

iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases

Edsel M. Abud,^{1,2,3} Ricardo N. Ramirez,⁴ Eric S. Martinez,^{1,2,3} Luke M. Healy,⁵ Cecilia H.H. Nguyen,^{1,2,3} Sean A. Newman,² Andriy V. Yeromin,⁶ Vanessa M. Scarfone,² Samuel E. Marsh,^{2,3} Cristhian Fimbres,³ Chad A. Caraway,³ Gianna M. Fote,^{1,2,3} Abdullah M. Madany,¹¹ Anshu Agrawal,⁷ Rakez Kayed,⁸ Karen H. Gylys,⁹ Michael D. Cahalan,⁶ Brian J. Cummings,^{2,3,10} Jack P. Antel,⁵ Ali Mortazavi,⁴ Monica J. Carson,¹¹ Wayne W. Poon,^{3,*} and Mathew Blurton-Jones^{1,2,3,12,*}

Directed Differentiation of Human Pluripotent Stem Cells to Microglia

Panagiotis Douvaras,^{1,*} Bruce Sun,¹ Minghui Wang,² Ilya Kruglikov,¹ Gregory Lallos,¹ Matthew Zimmer,¹ Cecile Terrenoire,¹ Bin Zhang,² Sam Gandy,³ Eric Schadt,² Donald O. Freytes,⁴ Scott Noggle,^{1,5} and Valentina Fossati^{1,5}

Dourvaras et al (2017) *Stem Cell Reports*

Microglia Differentiation Protocols

Haenseler et al (2017) Stem Cell Reports

A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response

Walther Haenseler,^{1,11} Stephen N. Sansom,^{2,11} Julian Buchrieser,¹ Sarah E. Newey,³ Craig S. Moore,⁴ Francesca J. Nicholls,⁵ Satyan Chintawar,⁶ Christian Schnell,⁷ Jack P. Antel,⁸ Nicholas D. Allen,⁷ M. Zameel Cader,⁶ Richard Wade-Martins,^{9,10} William S. James,¹ and Sally A. Cowley^{1,10,*}

Takata et al (2017) Immunity

Ryan et al (2017) Science Translational Med

Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function

Kazuyuki Takata,^{1,2,11} Tatsuya Kozaki,^{1,11} Christopher Zhe Wei Lee,^{1,12} Morgane Sonia Thion,^{3,12} Masayuki Otsuka,¹ Shawn Lim,¹ Kagistia Hana Utami,⁴ Kerem Fidan,⁶ Dong Shin Park,¹ Benoit Malleret,^{1,6} Svetoslav Chakarov,¹ Peter See,¹ Donovan Low,¹ Gillian Low,¹ Marta Garcia-Miralles,⁴ Ruizhu Zeng,⁴ Jinqiu Zhang,⁴ Chi Ching Goh,¹ Ahmet Gul,⁷ Sandra Hubert,¹ Bernett Lee,¹ Jinmiao Chen,¹ lyy Low,¹ Nurhidaya Binte Shadan,¹ Josephine Lum,¹ Tay Seok Wei,¹ Esther Mok,¹ Shohei Kawanishi,² Yoshihisa Kitamura,^{2,13} Anis Larbi,¹ Michael Poidinger,¹ Laurent Renia,¹ Lai Guan Ng,¹ Yochai Wolf,⁸ Steffen Jung,⁸ Tamer Önder,⁵ Evan Newell,¹ Tara Huber,⁹ Eishi Ashihara,² Sonia Garel,³

A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants

Katie J. Ryan, ^{1,2,3,4} Charles C. White, ^{1,2,4} Kruti Patel, ^{1,2,3,4} Jishu Xu, ^{1,2,4} Marta Olah, ^{4,5} Joseph M. Replogle, ^{1,2,3,4}* Michael Frangieh, ^{1,2,4} Maria Cimpean, ^{1,2,4†} Phoebe Winn, ^{1,2,4} Allison McHenry, ^{1,2,4} Belinda J. Kaskow, ^{1,2,3,4} Gail Chan, ^{1,2,3,4} Nicole Cuerdon, ^{1,2,3,4} David A. Bennett, ⁶ Justin D. Boyd, ^{1,3} Jaime Imitola, ⁷ Wassim Elyaman, ^{4,5} Philip L. De Jager, ^{4,5} Elizabeth M. Bradshaw^{4,5‡}

Brownjohn et al (2018) *Stem Cell Reports*

Functional Studies of Missense TREM2 Mutations in Human Stem Cell-Derived Microglia

Philip W. Brownjohn,¹ James Smith,¹ Ravi Solanki,¹ Ebba Lohmann,^{2,3} Henry Houlden,⁴ John Hardy,⁴ Sabine Dietmann,⁵ and Frederick J. Livesey^{1,*}

Differentiation Timelines

Muffat et al (2016) Nature Medicine

Differentiation Timeline

Pandaya et al (2017) *Nature Neuroscience*

- Two-step Differentiation
 - Step 1: Generation of hematopoietic progenitorlike intermediate cell
 - Step 2: Astrocyte Co-Culture
- Feeder free and OP9

Differentiation Timeline

Abud et al (2017) Neuron

Protocol	Starting Cells	Important Intermediates	Major differentiation factors	Feeder layer or co-culture	Yield (range)	Time (weeks)	Advantages
Muffat et al (2017) Nat Med	ES cells and iPSCs	YS embryoid bodies	IL-34 and CSF1	MEFs for human ES cell and iPSC propagation	0.5-4	8	Compatible with 3D culture
Pandya et al (2017) Nat Neuro	iPSCs	Haematopoeitic progenitor-like cells	GM-CSF, CSF1 and IL-3	OP9 murine stromal feeder layer Astrocyte-co- culture	2-3	2-4	Also works for iPSCs
Abud et al (2017) Neuron	iPSCs	Haematopoietic progenitors	MCSF, IL-34, TGFB-1, CD200, CX ₃ CL1	Rat hippocampal neurons during maturation	30-40	5	High purity; high yield; graftable to mouse brains
Douvaras et al (2017) Stem Cell Reports	ES cells and iPSCs	Myeloid progenitors	IL-34 and GM- CSF	No	2-3	8.5	Highly pure; can start with fewer iPSCs (10 ⁵)

Adapted from Li and Barres (2017) Nature Reviews Immunology

Microglia Markers and Functional

Markers

- CX₃CR1
- CD11b
- SALL1
- CD45^{low}
- MHC Class II^{low}
- P2RY12
- TMEM119

Functional

- Cytokine secretion
- Responsive to LPS
- Phagocytosis
- Responsive to ADP
- Environmental response

Protocol	Markers	Cytokine secretion	Phagocytosis	ADP response	Co-Culture
Muffat et al (2017) <i>Nat Med</i>	TMEM119 IBA1 CD45 P2RY12 (some)	Yes Unstimulated: IL-8, CSCL1, CCL2 Simulated with INFy and LPS: CSCL10, CCL3, IL-6, TNFa	Yes pH-rodo tagged <i>E. coli</i> particles	N/A	3D culture with neurons and astrocytes from the same iPSCs
Pandya et al (2017) <i>Nat</i> <i>Neuro</i>	CD11b IBA1 CX3CR1 CD45 TREM2	Yes Production of ROS and cytokines	Yes pH-rodo tagged <i>E. coli</i> particles	N/A	Co-culture with astrocytes during differentiation, implanted into mice with gliomas
Abud et al (2017) <i>Neuron</i>	CX3CR1 TREM2 TMEM119 (after transplantation)	Yes Responsive to LPS and IL-1ß stimulation	Yes Human synaptosomes, tau, β-amyloid	Yes	3D organoid co- culture, Co-culture with rat hippocampal neurons, transplanted into mice
Douvaras et al (2017) <i>Stem Cell</i> <i>Reports</i>	CD11c TMEM119 P2RY12 IBA1 CX3CR1	Yes Secretion, did not assay for stimulation	Yes Fluorescently-labeled latex microbeads	Yes Responsiveness to ADP with Ca ²⁺ transients	None