EPIGENETICS, STEM CELL-DERIVED NEURONS AND PD

Implications for disease modelling

Searching for the cause of iPD

Maybe epigenetics?

Sayyed K. Zaidi et al. Mol. Cell. Biol. 2010;30:4758-4766

Epigenetic drift

Epigenetic Drift Normal aging: **Biological** Premature aging decline in stem cell function, Age immunosenescence Genetic + 60 environmental risk factors (smoking, High disease obesity,...) risk 40 Deregulation of Healthy aging DNA methylome 20 Lifestyle Low disease Longevity genes? risk **Reprogramming?** 20 60 40 Chronological Age

Teschendorff et al., Human Molecular Genetics, 2013, Vol. 22, Review Issue 1

Methylation Regulates Alpha-Synuclein Expression and Is Decreased in Parkinson's Disease Patients' Brains

Jowaed et al. The Journal of Neuroscience, May 5, 2010 30(18):6355-6359

What about iPSC-derived patient-specific neurons?

iPSC models of PD

Jacobs, Journal of Parkinson's Disease 4 (2014) 15-27

Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients

c; 7(12): 1529–1546.

Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients

Fernández-Santiago et al. EMBO Mol Med. 2015 Dec; 7(12): 1529–1546.

Variability of DNA methylation patterns in iPSC- and ESC-derived neurons

ESC iPSC

Caveats

(1) Reprogrammingassociated epigenetic differences

(2) Rejuvenation of iPSCderived cells

(3) In vitro vs. native neurons

Reprogramming does not lead to an aberrant gene expression pattern

Choi, Jiho et al. Nature biotechnology 33.11 (2015): 1173–1181.

Reprogramming does not lead to an aberrant epigenome

Reprogramming does not lead to an aberrant epigenome

genome-wide DNA methylation (450K, Illumina) hES-NSC hES-NSC 0.96 0.97 0.99 0.96 0.96 0.97 0.98 0.97 0.97 0.91 0.90 0.86 0.87 0.97 iPS-NSC clone 1 iPS-NSC clone 1 0.98 0.98 0.96 0.99 0.98 0.98 0.98 0.97 0.91 0.92 0.87 0.88 iPS-NSC clone 2 iPS-NSC clone 2 0.99 0.95 0.96 0.99 0.98 0.97 0.90 0.90 0.86 0.87 iPS-NSC clone 3 iPS-NSC clone 3 0.96 0.97 0.98 0.99 0.90 0.90 0.86 0.88 hES-Neuron hES-Neuron 0.97 0.96 0.97 0.97 0.96 0.97 iPS-Neuron clone 1 iPS-Neuron clone 1 0.97 0.98 0.96 0.97 iPS-Neuron clone 2 iPS-Neuron clone 2 0.99 0.98 iPS-Neuron iPS-Neuron clone 3 clone 3

genome-wide expression levels (HT-12 v4, Illumina)

Caveats

iPSC-derived Neurons vs. iN

Mertens et al., Cell Stem Cell, Volume 17, Issue 6, 3 December 2015, Pages 705-718

Generating aged iPSC-derived neurons

Miller et al. Cell Stem Cell. 2013 Dec 5; 13(6): 691-705

Generating aged iPSC-derived neurons

Generating aged iPSC-derived neurons

Caveats

In vitro vs. native neurons

In vitro vs. native neurons

Xia et al., Scientific Reports volume 6, Article number: 20270 (2016) doi:10.1038/srep20270

Caveats

The way is the goal – but where are we going?

